Prenatal development is a gargantuan subject; I know little about it and certainly will not attempt to describe it in any detail here. One of the more interesting but baffling topics it deals with is the question of how the individual nerve fibers in a huge bundle find their proper destinations. For example, the eye, the geniculate, and the cortex are all formed independently of each other: as one of them matures, the axons that grow out must make many decisions. An optic-nerve fiber must grow across the retina to the optic disc, then along the optic nerve to the chiasm, deciding there whether to cross or not; it must then proceed to the lateral geniculate body on the side it has selected, go to the right layer or to the region that will become the right layer, go to just the right part of that layer so that the resulting topography becomes properly ordered, and finally it must branch and the branches must go to the correct parts of the geniculate cells-- cell body or dendrite. The same requirements apply to a fiber growing from the lateral geniculate body to area 17 or from area 17 to area 18. Although this general aspect of neurodevelopment is today receiving intense study in many laboratories, we still do not know how fibers seek out their targets. It is hard even to guess the winner out of the several major possibilities, mechanical guidance, following chemical gradients, or homing in on some complementary molecule in a manner analogous to what happens in immune systems. Much present-day research seems to point to many mechanisms, not just to one. This chapter deals mainly with the postnatal development of the mammalian visual system, in particular with the degree to which the system can be affected by the environment. In the first few stages of the cat and monkey visual path--the retina, geniculate, and perhaps the striate, or primary visual, cortex--an obvious question is whether any plasticity should be expected after birth. I will begin by describing a simple experiment. By about 1962 some of the main facts about the visual cortex of the adult cat were known: orientation selectivity had been discovered, simple and complex cells had been distinguished, and many cortical cells were known to be binocular and to show varying degrees of eye preference. We knew enough about the adult animal that we could ask direct questions aimed at learning whether the visual system was malleable. So Torsten Wiesel and I took a kitten a week old, when the eyes were just about to open, and sewed shut the lids of one eye. The procedure sounds harsh, but it was done under anesthesia and the kitten showed no signs of discomfort or distress when it woke up, back with its mother and littermates. After ten weeks we reopened the eye surgically, again under an anesthetic, and recorded from the kitten's cortex to learn whether the eye closure had had any effect on the eye or on the visual path.